Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(7): 9517-9531, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38324480

RESUMO

Transparent conductive oxides such as indium tin oxide (ITO) are standards for thin film electrodes, providing a synergy of high optical transparency and electrical conductivity. In an electrolytic environment, the determination of an inert electrochemical potential window is crucial to maintain a stable material performance during device operation. We introduce operando ellipsometry, combining cyclic voltammetry (CV) with spectroscopic ellipsometry, as a versatile tool to monitor the evolution of both complete optical (i.e., complex refractive index) and electrical properties under wet electrochemical operational conditions. In particular, we trace the degradation of ITO electrodes caused by electrochemical reduction in a pH-neutral, water-based electrolyte environment during electrochemical cycling. With the onset of hydrogen evolution at negative bias voltages, indium and tin are irreversibly reduced to the metallic state, causing an advancing darkening, i.e., a gradual loss of transparency, with every CV cycle, while the conductivity is mostly conserved over multiple CV cycles. Post-operando analysis reveals the reductive (loss of oxygen) formation of metallic nanodroplets on the surface. The reductive disruption of the ITO electrode happens at the solid-liquid interface and proceeds gradually from the surface to the bottom of the layer, which is evidenced by cross-sectional transmission electron microscopy imaging and complemented by energy-dispersive X-ray spectroscopy mapping. As long as a continuous part of the ITO layer remains at the bottom, the conductivity is largely retained, allowing repeated CV cycling. We consider operando ellipsometry a sensitive and nondestructive tool to monitor early stage material and property changes, either by tracing failure points, controlling intentional processes, or for sensing purposes, making it suitable for various research fields involving solid-liquid interfaces and electrochemical activity.

2.
Glob Chall ; 7(9): 2300062, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37745829

RESUMO

Four pinaceae pine resins analyzed in this study: black pine, shore pine, Baltic amber, and rosin demonstrate excellent dielectric properties, outstanding film forming, and ease of processability from ethyl alcohol solutions. Their trap-free nature allows fabrication of virtually hysteresis-free organic field effect transistors operating in a low voltage window with excellent stability under bias stress. Such green constituents represent an excellent choice of materials for applications targeting biocompatibility and biodegradability of electronics and sensors, within the overall effort of sustainable electronics development and environmental friendliness.

3.
J Am Chem Soc ; 144(42): 19372-19381, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36240390

RESUMO

In contrast to regular J- and H-aggregates, thin film squaraine aggregates usually have broad absorption spectra containing both J-and H-like features, which are favorable for organic photovoltaics. Despite being successfully applied in organic photovoltaics for years, a clear interpretation of these optical properties by relating them to specific excited states and an underlying aggregate structure has not been made. In this work, by static and transient absorption spectroscopy on aggregated n-butyl anilino squaraines, we provide evidence that both the red- and blue-shifted peaks can be explained by assuming an ensemble of aggregates with intermolecular dipole-dipole resonance interactions and structural disorder deriving from the four different nearest neighbor alignments─in sharp contrast to previous association of the peaks with intermolecular charge-transfer interactions. In our model, the next-nearest neighbor dipole-dipole interactions may be negative or positive, which leads to the occurrence of J- and H-like features in the absorption spectrum. Upon femtosecond pulse excitation of the aggregated sample, a transient absorption spectrum deviating from the absorbance spectrum emerges. The deviation finds its origin in the excitation of two-exciton states by the probe pulse. The lifetime of the exciton is confirmed by the band integral dynamics, featuring a single-exponential decay with a lifetime of 205 ps. Our results disclose the aggregated structure and the origin of red- and blue-shifted peaks and explain the absence of photoluminescence in squaraine thin films. Our findings underline the important role of structural disorder of molecular aggregates for photovoltaic applications.


Assuntos
Ciclobutanos , Análise Espectral , Vibração , Fenóis
4.
Opt Express ; 30(19): 34385-34395, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36242451

RESUMO

Recording of transient absorption microscopy images requires fast detection of minute optical density changes, which is typically achieved with high-repetition-rate laser sources and lock-in detection. Here, we present a highly flexible and cost-efficient detection scheme based on a conventional photodiode and an USB oscilloscope with MHz bandwidth, that deviates from the commonly used lock-in setup and achieves benchmark sensitivity. Our scheme combines shot-to-shot evaluation of pump-probe and probe-only measurements, a home-built photodetector circuit optimized for low pulse energies applying low-pass amplification, and a custom evaluation algorithm based on Fourier transformation. Advantages of this approach include abilities to simultaneously monitor multiple pulse modulation frequencies, implement the detection of additional pulse sequences (e.g., pump-only), and expand to multiple parallel detection channels for wavelength-dispersive probing. With a 40 kHz repetition-rate laser system powering two non-collinear optical parametric amplifiers for wide tuneability, we find that laser pulse fluctuations limit the sensitivity of the setup, while the detection scheme has negligible contribution. We demonstrate the 2-D imaging performance of our transient absorption microscope with studies on micro-crystalline molecular thin films.

5.
Langmuir ; 38(30): 9266-9277, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35858043

RESUMO

Controlling the polymorph formation in organic semiconductor thin films by the choice of processing parameters is a key factor for targeted device performance. Small molecular semiconductors such as the prototypical anilino squaraine compound with branched butyl chains as terminal functionalization (SQIB) allow both solution and vapor phase deposition methods. SQIB has been considered for various photovoltaic applications mainly as amorphous isotropic thin films due to its broad absorption within the visible to deep-red spectral range. The two known crystalline polymorphs adopting a monoclinic and orthorhombic crystal phase show characteristic Frenkel excitonic spectral signatures of overall H-type and J-type aggregates, respectively, with additional pronounced Davydov splitting. This gives a recognizable polarized optical response of crystalline thin films suitable for identification of the polymorphs. Both phases emerge with a strongly preferred out-of-plane and rather random in-plane orientation in spin-casted thin films depending on subsequent thermal annealing. By contrast, upon vapor deposition on dielectric and conductive substrates, such as silicon dioxide, potassium chloride, graphene, and gold, the polymorph expression depends basically on the choice of growth substrate. The same pronounced out-of-plane orientation is adopted in all crystalline cases, but with a surface templated in-plane alignment in case of crystalline substrates. Strikingly, the amorphous isotropic thin films obtained by vapor deposition cannot be crystallized by thermal postannealing, which is a key feature for the spin-casted thin films, here monitored by polarized in situ microscopy. Combining X-ray diffraction, atomic force microscopy, ellipsometry, and polarized spectro-microscopy, we identify the processing-dependent evolution of the crystal phases, correlating morphology and molecular orientations within the textured SQIB films.

6.
ACS Nano ; 16(3): 4693-4704, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35188735

RESUMO

Enlarging exciton coherence lengths in molecular aggregates is critical for enhancing the collective optical and transport properties of molecular thin film nanostructures or devices. We demonstrate that the exciton coherence length of squaraine aggregates can be increased from 10 to 24 molecular units at room temperature when preparing the aggregated thin film on a metallic rather than a dielectric substrate. Two-dimensional electronic spectroscopy measurements reveal a much lower degree of inhomogeneous line broadening for aggregates on a gold film, pointing to a reduced disorder. The result is corroborated by simulations based on a Frenkel exciton model including exciton-plasmon coupling effects. The simulation shows that localized, energetically nearly resonant excitons on spatially well separated segments can be radiatively coupled via delocalized surface plasmon polariton modes at a planar molecule-gold interface. Such plasmon-enhanced delocalization of the exciton wave function is of high importance for improving the coherent transport properties of molecular aggregates on the nanoscale. Additionally, it may help tailor the collective optical response of organic materials for quantum optical applications.

7.
J Phys Chem Lett ; 12(12): 3053-3058, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33739845

RESUMO

Polycrystalline textured thin films with distinct pleochroism and birefringence comprising oriented rotational domains of the orthorhombic polymorph of an anilino squaraine with isobutyl side chains (SQIB) are analyzed by imaging Mueller matrix ellipsometry to obtain the biaxial dielectric tensor. Simultaneous fitting of transmission and oblique incidence reflection Mueller matrix scans combined with the spatial resolution of an optical microscope allows to accurately determine the full biaxial dielectric tensor from a single crystallographic sample orientation. Oscillator dispersion relations model well the dielectric tensor components. Strong intermolecular interactions cause the real permittivity for all three directions to become strongly negative near the excitonic resonances, which is appealing for nanophotonic applications.

8.
Chirality ; 32(5): 619-631, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32155676

RESUMO

An enantiomerically pure (R)-2-methylpyrrolidine-based anilino squaraine crystallizes in two chiral polymorphs adopting a monoclinic C2 and an orthorhombic P21 21 21 structure, respectively. By various thin-film preparation techniques, a control of the polymorph formation is targeted. The local texture of the resulting textured thin films is connected to the corresponding optical properties. Special attention is paid to an unusual Davydov splitting, the anisotropic chiroptical response arising from preferred out-of-plane orientation of the crystallites, and the impact of the polymorph specific excitonic coupling.

9.
Nat Commun ; 9(1): 2413, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925832

RESUMO

Molecular chirality and the inherently connected differential absorption of circular polarized light (CD) combined with semiconducting properties offers great potential for chiral opto-electronics. Here we discuss the temperature-controlled assembly of enantiopure prolinol functionalized squaraines with opposite handedness into intrinsically circular dichroic, molecular J-aggregates in spincasted thin films. By Mueller matrix spectroscopy we accurately probe an extraordinary high excitonic circular dichroism, which is not amplified by mesoscopic ordering effects. At maximum, CD values of 1000 mdeg/nm are reached and, after accounting for reflection losses related to the thin film nature, we obtain a film thickness independent dissymmetry factor g = 0.75. The large oscillator strength of the corresponding absorption within the deep-red spectral range translates into a negative real part of the dielectric function in the spectral vicinity of the exciton resonance. Thereby, we provide a new small molecular benchmark material for the development of organic thin film based chiroptics.

10.
J Chem Phys ; 148(7): 074702, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29471637

RESUMO

The adsorption of anilino squaraines, an important chromophore for the use in organic solar cells, to Ag(001) and Au(111) has been studied with scanning tunneling microscopy. Self-assembly into square building blocks with eight molecules per unit cell is revealed on the Ag surface, while no ordering effects occur on gold. The squaraine-silver interaction is mediated by the carbonyl and hydroxyl oxygens located in the center of the molecule. The intermolecular coupling, on the other hand, is governed by hydrogen bonds formed between the terminal isobutyl groups and oxygen species of adjacent molecules. The latter gets maximized by rotating the molecules by a few degrees against a perfect square alignment. A similar molecular pattern does not form on Au(111) due to symmetry mismatch. Moreover, the high electronegativity of gold reduces the directing effect of oxygen-metal bonds that trigger the ordering process on silver. As a consequence, only frustrated three-fold symmetric units that do not expand into an ordered molecular network are present on the gold surface.

11.
J Chem Phys ; 146(13): 134704, 2017 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-28390357

RESUMO

The epitaxial growth of the mono-functionalized para-quaterphenylene molecule CNHP4 on muscovite mica is investigated. The vacuum deposited molecules aggregate into nanofibers of varying morphology. Due to muscovite's cm symmetry, almost mutually parallel fibers grow. Polarized light microscopy together with X-ray diffraction resolves the projected orientation of the molecules on the substrate surface and within the fibers. Several different contact planes with the substrate are detected. For all of them, the molecules orient with their long molecule axis approximately perpendicular to the grooved muscovite direction, so that the alignment of the molecules on the substrate is uniform. Kelvin probe force microscopy finds vastly different electrostatic properties of different fiber types and facets.

12.
Phys Chem Chem Phys ; 19(10): 6996-7008, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28239738

RESUMO

We suggest and explore a novel route towards organic photodetectors sensitive to the circular polarization state of light. For this, we insert fullerene-blended thin films of homochiral squaraine compounds acting as a highly circular dichroic active layer into conventional bulk hetero-junction photodiodes. Initially, we discuss steady-state characterization of photodiodes with unpolarized light. The homochiral, l-proline derived squaraine compounds are obtained via a chiral pool synthesis in sizable quantities. The aggregation behavior of the two compounds with varying side chain length is complex. They exhibit H-type spectral signatures only in colloidal solution, and both H- and J-type features with large splitting in neat and fullerene-blended thin films. We probe strong excitonic circular dichroism for both aggregate species, showing the most competitive dissymmetry factors up to -0.055 in fullerene-blended thin films. We vary the blend ratio and layer thickness of such active layers in the photodiodes. The device performance is in all cases limited by a low fill factor which is accompanied by a voltage-dependent photocurrent. Current-voltage measurements show light intensity dependent characteristics, which are S-shaped, contrary to our expectations, only for thin active layers independent of the blend ratio. The external quantum efficiency is in some cases extraordinarily high, exceeding 100 percent in the blue spectral range under modest reverse bias voltages for thin, fullerene-rich devices. However, the most promising are the devices with thick, donor-rich layers defined by a spectral overlap of the strongest photocurrent response and the maximum circular dichroism within the green spectral range. Thus, we demonstrate the feasibility of combining photodiode functionality and strong circular dichroism as intrinsic material properties.

13.
Soft Matter ; 12(46): 9297-9302, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27819374

RESUMO

Oriented, fluorescing organic nanoaggregates derived from 1,4'''-dicyano-functionalized para-quaterphenylene (CNP4) are obtained upon vacuum deposition on muscovite mica. Two types of aggregates are observed with fiber- and wing-like shape, respectively, both growing along distinct substrate directions. The polarization of the emitted fluorescence, their morphology, and their electric surface potential differ, reflecting different polymorphs. The wings are chiral twins. The molecules orient within ±5° along the same direction, templated by the substrate.

14.
Langmuir ; 32(33): 8533-42, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27480642

RESUMO

As a step toward the realization of neuroprosthetics for vision restoration, we follow an electrophysiological patch-clamp approach to study the fundamental photoelectrical stimulation mechanism of neuronal model cells by an organic semiconductor-electrolyte interface. Our photoactive layer consisting of an anilino-squaraine donor blended with a fullerene acceptor is supporting the growth of the neuronal model cell line (N2A cells) without an adhesion layer on it and is not impairing cell viability. The transient photocurrent signal upon illumination from the semiconductor-electrolyte layer is able to trigger a passive response of the neuronal cells under physiological conditions via a capacitive coupling mechanism. We study the dynamics of the capacitive transmembrane currents by patch-clamp recordings and compare them to the dynamics of the photocurrent signal and its spectral responsivity. Furthermore, we characterize the morphology of the semiconductor-electrolyte interface by atomic force microscopy and study the stability of the interface in dark and under illuminated conditions.


Assuntos
Eletrólitos/química , Luz , Potenciais da Membrana , Neurônios/metabolismo , Semicondutores , Compostos de Anilina/química , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Ciclobutanos/química , Estimulação Elétrica , Fulerenos/química , Camundongos , Neurônios/citologia , Fenóis/química
15.
Nano Lett ; 15(7): 4685-91, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26061633

RESUMO

We report photoelectron emission from the apex of a sharp gold nanotaper illuminated via grating coupling at a distance of 50 µm from the emission site with few-cycle near-infrared laser pulses. We find a fifty-fold increase in electron yield over that for direct apex illumination. Spatial localization of the electron emission to a nanometer-sized region is demonstrated by point-projection microscopic imaging of a silver nanowire. Our results reveal negligible plasmon-induced electron emission from the taper shaft and thus efficient nanofocusing of few-cycle plasmon wavepackets. This novel, remotely driven emission scheme offers a particularly compact source of ultrashort electron pulses of immediate interest for miniaturized electron microscopy and diffraction schemes with ultrahigh time resolution.

16.
Phys Chem Chem Phys ; 16(12): 5747-54, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24531698

RESUMO

Naphthyl end-capped oligothiophenes are a class of materials well suited for high-performance organics based devices. The formation of nanofibers on muscovite mica from 2,5-bis(naphth-2-yl)thiophene (NaT), 5,5'-bis(naphth-2-yl)-2,2'-bithiophene (NaT2), and 5,5''-bis(naphth-2-yl)-2,2':5',2''-terthiophene (NaT3) as well as of the methoxy-functionalized variants MONaT, MONaT2, and MONaT3 is investigated via atomic force microscopy, X-ray diffraction, polarized fluorescence microscopy, and fluorescence spectroscopy. From polarized fluorescence microscopy spatially resolved molecular orientations are deduced revealing a profound anisotropy. Fibers from lying molecules grow along distinct substrate directions. Methoxy-functionalization substantially increases the crystallization into aligned fibers. In air Ostwald ripening is observed. The morphological variations of the aggregates result in specific optical signatures, disclosed by temperature dependent and spatially resolved fluorescence spectra.

17.
Nanotechnology ; 25(3): 035602, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24356510

RESUMO

We observe the formation of thin films of fibre-like aggregates from the prototypical organic semiconductor molecule para-hexaphenylene (p-6P) on graphite thin flakes and on monolayer graphene. Using atomic force microscopy, scanning electron microscopy, x-ray diffraction, polarized fluorescence microscopy, and bireflectance microscopy, the molecular orientations on the surface are deduced and correlated to both the morphology as well as to the high-symmetry directions of the graphitic surface: the molecules align with their long axis at ±11° with respect to a high-symmetry direction. The results show that the graphene surface can be used as a growth substrate to direct the self-assembly of organic molecular thin films and nanofibres, both with and without lithographical processing.

18.
Small ; 4(2): 176-81, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18203230

RESUMO

A new route to bottom-up organic nanotechnology is presented. Molecular building blocks with specific optoelectronic properties are designed and grown via directed self-assembly arrays of morphologically controlled light-emitting organic nanofibers on template surfaces. The fibers can be easily transferred from the growth substrate to device platforms either as single entities or as ordered arrays. Due to the extraordinary flexibility in the design of their optoelectronic properties they serve as key elements in next-generation nanophotonic devices.


Assuntos
Nanotecnologia/métodos , Silicatos de Alumínio , Compostos de Benzil/química , Química Orgânica , Eletroquímica , Microscopia de Força Atômica , Microscopia de Fluorescência , Nanopartículas/química , Nanopartículas/ultraestrutura , Nanotubos/química , Nanotubos/ultraestrutura , Nanofios/química , Nanofios/ultraestrutura , Óptica e Fotônica , Fenômenos de Química Orgânica , Fotoquímica , Espectrofotometria Infravermelho
19.
Soft Matter ; 4(2): 277-285, 2008 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-32907241

RESUMO

Functionalized para-phenylenes are versatile building blocks for generating aligned fiber-like nanostructures by a self-assembly growth process on muscovite mica substrates upon controlled vapor deposition (molecule epitaxy). Functional groups were implemented at the 1,4‴-para-positions of p-quaterphenylenes (p4P) using a Suzuki cross-coupling strategy. The nanoaggregates possess outstanding optical properties, which can be modified in a controlled manner by functionalization. Functionalization allows the fluorescence peak emission frequency to shift within the blue spectral range, and the nanoaggregates' three-dimensional shape alters depending on the substitution. In the case of asymmetrically functionalized phenylenes due to the intrinsic non-zero hyperpolarizability of push-pull functionalized oligomers and non-centrosymmetry of the respective nanofibers, they act as frequency doublers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...